metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{5,5'-Dimethoxy-2,2'-[4,5-dimethyl-ophenylenebis(nitrilomethylidyne)]diphenolato}nickel(II)

Atefeh Sahraei,^a Hadi Kargar,^a Reza Kia^{b,c}* and Muhammad Nawaz Tahir^d*

^aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, ^bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^cX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and ^dDepartment of Physics, University of Sargodha, Punjab, Pakistan Correspondence e-mail: rkia@srbiau.ac.ir, zsrkk@yahoo.com, dmntahir_uos@yahoo.com

Received 2 December 2010; accepted 10 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.092; data-to-parameter ratio = 16.9.

In the title Schiff base complex, $[Ni(C_{24}H_{22}N_2O_4)]$, the Ni^{II} atom shows a square-planar geometry. The dihedral angles between the central benzene ring and the two outer rings are 4.79 (15) and 7.54 (15)°. In the crystal, molecules are connected through intermolecular C–H···O hydrogen bond, resulting in chains extending along the *c* axis. The crystal structure is further stabilized by intermolecular π – π interactions, with centroid–centroid distances in the range 3.3760 (15)–3.7196 (17) Å.

Related literature

For background to Schiff base-metal complexes, see: Granovski *et al.* (1993); Blower *et al.* (1998). For related structures, see: Elmali *et al.* (2000); Kargar *et al.* (2010).

Experimental

Crystal data $[Ni(C_{24}H_{22}N_2O_4)]$ V = 2094.5 (4) Å³ $M_r = 461.15$ Z = 4 Monoclinic, $P2_1/c$ Mo K α radiation a = 11.3244 (10) Å $\mu = 0.96 \text{ mm}^{-1}$ b = 16.5528 (19) Å T = 296 K c = 12.1622 (11) Å $0.24 \times 0.12 \times 0.08 \text{ mm}$

Data collection

Stoe IPDS II Image Plate	13361 measured reflections
diffractometer	4799 independent reflections
Absorption correction: multi-scan	3241 reflections with $I > 2\sigma(I)$
(MULABS in PLATON;	$R_{\rm int} = 0.070$
Spek, 2009)	
$T_{\rm min} = 0.872, \ T_{\rm max} = 1.000$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 284 parameters $wR(F^2) = 0.092$ H-atom parameters constrainedS = 0.98 $\Delta \rho_{max} = 0.25$ e Å $^{-3}$ 4799 reflections $\Delta \rho_{min} = -0.37$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7A\cdots O2^{i}$	0.93	2.41	3.173 (3)	140
	. 1 . 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HK and AS thank PNU for financial support. RK thanks Islamic Azad University. MNT thanks GC University of Sargodha, Pakistan, for the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2367).

References

- Blower, P. J. (1998). Transition Met. Chem. 23, 109–112.
- Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.
- Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.

Kargar, H., Kia, R., Tahir, M. N. & Sahraei, A. (2010). Acta Cryst. E66, m1246.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2011). E67, m82-m83 [doi:10.1107/S1600536810051834]

{5,5'-Dimethoxy-2,2'-[4,5-dimethyl-o-phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II)

A. Sahraei, H. Kargar, R. Kia and M. N. Tahir

Comment

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structurel research (Kargar et al., 2010; Elmali et al., 2000; Blower et al., 1998).

In the title compound (Fig. 1), the geometry around the Ni(II) atom is square-planar which is coordinated by O1/O2/N1/N2 donor atoms of the tetradenate Schiff base ligand. The dihedral angles between the central benzene ring (C8–C13), and the two outer rings (C1–C6 and C15–C20) are 4.79 (15) and 7.54 (15)°. The crystal structure is further stabilized by intermolecular π – π interactions [Cg1···Cg2ⁱ = 3.4737 (17)Å; Cg2···Cg3ⁱ = 3.7196 (17)Å; Cg3···Cg3ⁱ = 3.3760 (15)Å; Cg1, Cg2, and Cg3 are the centroids of the Ni1/N1/C8/C13/N2, C15–C20, and Ni1/O2/C20/C15/C14/N2 rings, respectively].

Experimental

The title compound was synthesized by adding bis(4-methoxysalicylidene)-4,5-dimethyl phenylenediamine (2 mmol) to a solution of NiCl₂. 6 H₂O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered. Dark-red plate single crystals of the title compound suitable for *X*-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.96 Å and included in a riding model approximation with U_{iso} (H) = 1.2 or 1.5 U_{eq} (C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.

Fig. 2. The packing of the title compound viewed down the *a*-axis showing 1-D infinite chains along the *c* -axis through the intermolecular C—H···O hydrogen bonds shown as dashed lines; H-atoms not involved in hydrogen bonding were excluded for clarity.

{5,5'-Dimethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II)

Crystal data	
[Ni(C ₂₄ H ₂₂ N ₂ O ₄)]	F(000) = 960
$M_r = 461.15$	$D_{\rm x} = 1.462 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2525 reflections
a = 11.3244 (10) Å	$\theta = 2.5 - 29.5^{\circ}$
<i>b</i> = 16.5528 (19) Å	$\mu = 0.96 \text{ mm}^{-1}$
c = 12.1622 (11) Å	T = 296 K
$\beta = 113.261 \ (6)^{\circ}$	Block, red
$V = 2094.5 (4) \text{ Å}^3$	$0.24 \times 0.12 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Stoe IPDS II Image Plate diffractometer	4799 independent reflections
Radiation source: fine-focus sealed tube	3241 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.070$
Detector resolution: 0.15 mm pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ω scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009)	$k = -21 \rightarrow 20$
$T_{\min} = 0.872, \ T_{\max} = 1.000$	$l = -15 \rightarrow 11$
13361 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.092$	H-atom parameters constrained
<i>S</i> = 0.98	$w = 1/[\sigma^2(F_o^2) + (0.035P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
4799 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
284 parameters	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.52301 (3)	0.15530 (2)	0.57365 (3)	0.03266 (10)
01	0.67263 (16)	0.20767 (13)	0.58815 (17)	0.0422 (5)
O2	0.52566 (17)	0.11985 (13)	0.43077 (16)	0.0418 (5)
03	1.05950 (18)	0.35630 (16)	0.7684 (2)	0.0597 (7)
O4	0.4090 (3)	-0.00753 (17)	0.0642 (2)	0.0735 (8)
N1	0.51974 (18)	0.19646 (15)	0.7148 (2)	0.0344 (5)
N2	0.37394 (18)	0.10034 (14)	0.5568 (2)	0.0346 (5)
C1	0.7477 (2)	0.25092 (18)	0.6784 (2)	0.0334 (6)
C2	0.8639 (2)	0.27954 (18)	0.6749 (2)	0.0387 (7)
H2A	0.8848	0.2664	0.6104	0.046*
C3	0.9458 (2)	0.32637 (19)	0.7655 (3)	0.0430 (7)
C4	0.9165 (3)	0.3470 (2)	0.8639 (3)	0.0519 (8)
H4A	0.9732	0.3785	0.9254	0.062*
C5	0.8052 (3)	0.3209 (2)	0.8688 (3)	0.0453 (8)
H5A	0.7853	0.3360	0.9331	0.054*
C6	0.7184 (2)	0.27109 (18)	0.7778 (2)	0.0338 (6)
C7	0.6055 (2)	0.24385 (18)	0.7899 (2)	0.0357 (6)
H7A	0.5917	0.2612	0.8566	0.043*
C8	0.4111 (2)	0.16962 (18)	0.7365 (2)	0.0357 (7)
C9	0.3808 (3)	0.1909 (2)	0.8325 (3)	0.0446 (7)
H9A	0.4343	0.2264	0.8899	0.053*
C10	0.2727 (3)	0.1607 (2)	0.8449 (3)	0.0483 (7)
C11	0.1927 (3)	0.1070 (2)	0.7575 (3)	0.0482 (8)
C12	0.2238 (2)	0.0857 (2)	0.6625 (3)	0.0453 (7)
H12A	0.1707	0.0501	0.6051	0.054*
C13	0.3324 (2)	0.11598 (18)	0.6505 (3)	0.0363 (6)
C14	0.3126 (2)	0.04987 (18)	0.4708 (3)	0.0400 (7)
H14A	0.2437	0.0221	0.4762	0.048*
C15	0.3415 (2)	0.03359 (18)	0.3702 (3)	0.0371 (6)
C16	0.2637 (3)	-0.0209 (2)	0.2821 (3)	0.0495 (8)
H16A	0.1975	-0.0472	0.2946	0.059*
C17	0.2811 (3)	-0.0367 (2)	0.1799 (3)	0.0498 (8)
H17A	0.2278	-0.0728	0.1234	0.060*
C18	0.3811 (3)	0.0025 (2)	0.1622 (3)	0.0475 (8)
C19	0.4612 (3)	0.0550 (2)	0.2466 (3)	0.0462 (7)
H19A	0.5277	0.0800	0.2331	0.055*
C20	0.4444 (2)	0.07135 (18)	0.3526 (2)	0.0354 (6)
C21	1.0950 (3)	0.3371 (3)	0.6713 (3)	0.0656 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H21A	1.1776	0.3601	0.6857	0.098*
H21B	1.0322	0.3587	0.5985	0.098*
H21C	1.0990	0.2795	0.6644	0.098*
C22	0.3392 (4)	-0.0663 (3)	-0.0224 (3)	0.0770 (12)
H22A	0.3711	-0.0680	-0.0847	0.116*
H22B	0.2497	-0.0522	-0.0560	0.116*
H22C	0.3499	-0.1184	0.0151	0.116*
C23	0.2426 (3)	0.1856 (3)	0.9503 (3)	0.0672 (11)
H23A	0.3058	0.2237	0.9984	0.101*
H23B	0.2439	0.1388	0.9975	0.101*
H23C	0.1590	0.2100	0.9221	0.101*
C24	0.0704 (3)	0.0742 (3)	0.7637 (4)	0.0730 (12)
H24A	0.0351	0.0330	0.7041	0.110*
H24B	0.0092	0.1172	0.7493	0.110*
H24C	0.0895	0.0517	0.8416	0.110*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.03026 (15)	0.0399 (2)	0.03049 (16)	-0.00596 (16)	0.01484 (12)	-0.00084 (19)
01	0.0399 (9)	0.0571 (14)	0.0355 (11)	-0.0172 (9)	0.0211 (9)	-0.0088 (10)
O2	0.0435 (10)	0.0532 (13)	0.0317 (10)	-0.0148 (9)	0.0181 (9)	-0.0081 (10)
O3	0.0461 (11)	0.0767 (19)	0.0631 (14)	-0.0283 (11)	0.0289 (10)	-0.0166 (13)
O4	0.0989 (18)	0.078 (2)	0.0524 (15)	-0.0325 (15)	0.0394 (14)	-0.0308 (14)
N1	0.0332 (10)	0.0406 (14)	0.0335 (12)	-0.0018 (10)	0.0177 (10)	-0.0010 (11)
N2	0.0293 (10)	0.0376 (14)	0.0384 (13)	-0.0007 (9)	0.0150 (10)	0.0018 (11)
C1	0.0312 (12)	0.0367 (17)	0.0318 (14)	-0.0023 (11)	0.0122 (11)	0.0044 (12)
C2	0.0369 (13)	0.0477 (19)	0.0356 (15)	-0.0073 (12)	0.0185 (12)	-0.0032 (14)
C3	0.0364 (13)	0.047 (2)	0.0480 (17)	-0.0099 (12)	0.0192 (13)	-0.0003 (14)
C4	0.0483 (15)	0.064 (2)	0.0419 (16)	-0.0203 (16)	0.0158 (13)	-0.0151 (18)
C5	0.0468 (15)	0.056 (2)	0.0392 (16)	-0.0082 (13)	0.0231 (13)	-0.0091 (15)
C6	0.0329 (12)	0.0392 (17)	0.0305 (14)	-0.0028 (11)	0.0138 (11)	0.0018 (13)
C7	0.0395 (13)	0.0392 (17)	0.0344 (14)	0.0010 (12)	0.0209 (12)	-0.0004 (13)
C8	0.0338 (12)	0.0397 (19)	0.0392 (15)	-0.0021 (11)	0.0203 (12)	0.0029 (13)
С9	0.0430 (15)	0.0514 (19)	0.0482 (18)	-0.0059 (13)	0.0274 (14)	-0.0064 (15)
C10	0.0500 (15)	0.050 (2)	0.0586 (19)	0.0025 (15)	0.0364 (15)	0.0001 (18)
C11	0.0424 (15)	0.047 (2)	0.069 (2)	0.0002 (13)	0.0370 (16)	0.0050 (17)
C12	0.0353 (13)	0.0456 (19)	0.060 (2)	-0.0073 (13)	0.0243 (14)	-0.0015 (16)
C13	0.0322 (12)	0.0386 (17)	0.0430 (16)	0.0018 (11)	0.0201 (12)	0.0054 (14)
C14	0.0300 (12)	0.0404 (18)	0.0510 (17)	-0.0052 (12)	0.0176 (12)	-0.0004 (15)
C15	0.0337 (13)	0.0353 (17)	0.0409 (16)	0.0015 (11)	0.0135 (12)	-0.0026 (13)
C16	0.0381 (14)	0.048 (2)	0.060 (2)	-0.0085 (13)	0.0173 (15)	-0.0112 (17)
C17	0.0460 (16)	0.046 (2)	0.0474 (19)	-0.0041 (14)	0.0079 (14)	-0.0147 (16)
C18	0.0559 (17)	0.045 (2)	0.0410 (18)	-0.0002 (15)	0.0185 (15)	-0.0089 (15)
C19	0.0530 (16)	0.048 (2)	0.0401 (16)	-0.0102 (15)	0.0214 (14)	-0.0059 (15)
C20	0.0377 (13)	0.0348 (17)	0.0302 (14)	0.0000 (11)	0.0097 (12)	-0.0008 (12)
C21	0.0509 (16)	0.086 (3)	0.071 (2)	-0.0267 (19)	0.0368 (17)	-0.017 (2)
C22	0.094 (3)	0.081 (3)	0.053 (2)	-0.019 (2)	0.026 (2)	-0.029 (2)

C23	0.069 (2)	0.082 (3)	0.075 (3)	-0.0068 (19)	0.054 (2)	-0.009 (2)
C24	0.0556 (19)	0.082 (3)	0.103 (3)	-0.0189 (19)	0.055 (2)	-0.010 (2)
Geometric param	neters (Å, °)					
Ni1—O2		1.8456 (19)	C10	C11		1.407 (5)
Ni1-01		1.8485 (17)	C10	—C23		1.508 (4)
Ni1—N2		1.856 (2)	C11-	C12		1.380 (4)
Ni1—N1		1.861 (2)	C11-	C24		1.517 (4)
O1—C1		1.305 (3)	C12-	—C13		1.388 (3)
O2—C20		1.306 (3)	C12-	—H12A		0.9300
O3—C3		1.367 (3)	C14	C15		1.411 (4)
O3—C21		1.425 (4)	C14	—H14A		0.9300
O4—C18		1.358 (4)	C15-	C20		1.411 (4)
O4—C22		1.422 (4)	C15-	—C16		1.412 (4)
N1—C7		1.301 (3)	C16	—C17		1.358 (4)
N1—C8		1.428 (3)	C16	—H16A		0.9300
N2-C14		1.304 (4)	C17-	C18		1.395 (4)
N2—C13		1.417 (3)	C17-	—H17A		0.9300
C1—C6		1.414 (4)	C18-	—C19		1.376 (4)
C1—C2		1.416 (3)	C19-	—C20		1.402 (4)
С2—С3		1.367 (4)	C19-	—H19A		0.9300
C2—H2A		0.9300	C21-	—H21A		0.9600
C3—C4		1.404 (4)	C21-	—H21B		0.9600
C4—C5		1.356 (4)	C21-	—H21C		0.9600
C4—H4A		0.9300	C22-	—H22A		0.9600
С5—С6		1.417 (4)	C22-	—H22B		0.9600
С5—Н5А		0.9300	C22-	—H22C		0.9600
С6—С7		1.417 (3)	C23-	—Н23А		0.9600
C7—H7A		0.9300	C23-	—Н23В		0.9600
С8—С9		1.386 (4)	C23-	—Н23С		0.9600
C8—C13		1.393 (4)	C24	—H24A		0.9600
C9—C10		1.384 (4)	C24	—H24B		0.9600
С9—Н9А		0.9300	C24	—H24C		0.9600
Cg1…Cg2 ⁱ		3.4737 (17)	Cg3	···Cg3 ⁱ		3.3760 (15)
Cg2…Cg3 ⁱ		3.7196 (17)				
02—Ni1—O1		83.33 (8)	C11-			119.1
O2—Ni1—N2		95.32 (9)	C13-			119.1
01—Ni1—N2		178.38 (10)	C12-	C13C8		118.8 (3)
O2—Ni1—N1		177.06 (10)	C12-			127.4 (3)
01—Ni1—N1		95.26 (9)	C8-	-C13—N2		113.8 (2)
N2—Ni1—N1		86.13 (10)	N2-	C14C15		125.9 (2)
C1—O1—Ni1		127.25 (17)	N2-	C14H14A		117.1
C20—O2—Ni1		127.75 (17)	C15-			117.1
C3—O3—C21		117.9 (2)	C14			122.3 (2)
C18—O4—C22		118.7 (3)	C14			119.4 (3)
C7—N1—C8		121.1 (2)	C20			118.2 (3)
C7—N1—Ni1		125.95 (18)	C17-			123.1 (3)

C8—N1—Ni1	112.92 (17)	С17—С16—Н16А	118.5
C14—N2—C13	121.4 (2)	C15—C16—H16A	118.5
C14—N2—Ni1	125.10 (19)	C16—C17—C18	118.1 (3)
C13—N2—Ni1	113 45 (18)	C16—C17—H17A	121.0
01-C1-C6	123.7 (2)	C18—C17—H17A	121.0
01 - C1 - C2	1175(2)	04-C18-C19	1147(3)
C6—C1—C2	118.8 (2)	04	124.2 (3)
C_{3} — C_{2} — C_{1}	120.5 (3)	C19—C18—C17	121.0 (3)
C3—C2—H2A	119.7	C18—C19—C20	121.2 (3)
C1—C2—H2A	119.7	С18—С19—Н19А	119.4
$C_2 - C_3 - O_3$	123.9 (3)	C20—C19—H19A	119.4
C2—C3—C4	120.8 (2)	O2—C20—C19	118.4 (3)
03—C3—C4	115.3 (3)	02-C20-C15	123.3 (2)
C5-C4-C3	119.8 (3)	C19—C20—C15	118.3 (3)
C5—C4—H4A	120.1	03—C21—H21A	109.5
C3—C4—H4A	120.1	O3—C21—H21B	109.5
C4—C5—C6	121.4 (3)	H21A—C21—H21B	109.5
C4—C5—H5A	119.3	03-C21-H21C	109.5
С6—С5—Н5А	119.3	$H_{21}A = C_{21} = H_{21}C$	109.5
C1—C6—C7	122.6 (2)	H21B-C21-H21C	109.5
C1—C6—C5	118.7 (2)	04—C22—H22A	109.5
C7—C6—C5	118.7 (3)	04—C22—H22B	109.5
N1—C7—C6	125.0 (3)	H22A—C22—H22B	109.5
N1—C7—H7A	117.5	04—C22—H22C	109.5
С6—С7—Н7А	117.5	H22A—C22—H22C	109.5
C9—C8—C13	119.8 (2)	H22B—C22—H22C	109.5
C9—C8—N1	126.5 (3)	C10—C23—H23A	109.5
C13—C8—N1	113.7 (2)	С10—С23—Н23В	109.5
C10—C9—C8	121.6 (3)	H23A—C23—H23B	109.5
С10—С9—Н9А	119.2	С10—С23—Н23С	109.5
С8—С9—Н9А	119.2	H23A—C23—H23C	109.5
C9—C10—C11	118.6 (3)	H23B—C23—H23C	109.5
C9—C10—C23	120.0 (3)	C11—C24—H24A	109.5
C11—C10—C23	121.3 (3)	C11—C24—H24B	109.5
C12—C11—C10	119.5 (3)	H24A—C24—H24B	109.5
C12—C11—C24	119.3 (3)	C11—C24—H24C	109.5
C10—C11—C24	121.1 (3)	H24A—C24—H24C	109.5
C11—C12—C13	121.7 (3)	H24B—C24—H24C	109.5
O2—Ni1—O1—C1	-177.0 (3)	C8—C9—C10—C11	0.1 (5)
N1—Ni1—O1—C1	5.6 (3)	C8—C9—C10—C23	-179.7 (3)
O1—Ni1—O2—C20	178.4 (2)	C9—C10—C11—C12	0.2 (5)
N2—Ni1—O2—C20	-0.7 (2)	C23—C10—C11—C12	-179.9 (3)
01—Ni1—N1—C7	-1.8 (3)	C9—C10—C11—C24	-177.7 (3)
N2—Ni1—N1—C7	177.3 (3)	C23—C10—C11—C24	2.1 (5)
01—Ni1—N1—C8	179.12 (19)	C10-C11-C12-C13	-0.1 (5)
N2—Ni1—N1—C8	-1.71 (19)	C24—C11—C12—C13	177.9 (3)
O2—Ni1—N2—C14	5.4 (2)	C11—C12—C13—C8	-0.4 (5)
N1—Ni1—N2—C14	-177.1 (2)	C11—C12—C13—N2	-178.7 (3)
O2—Ni1—N2—C13	-176.57 (19)	C9—C8—C13—C12	0.7 (4)

N1—Ni1—N2—C13	0.86 (19)	N1-C8-C13-C12	179.9 (2)
Ni1—O1—C1—C6	-6.3 (4)	C9—C8—C13—N2	179.3 (3)
Ni1—01—C1—C2	174.40 (19)	N1-C8-C13-N2	-1.6 (4)
O1—C1—C2—C3	178.8 (3)	C14—N2—C13—C12	-3.3 (5)
C6—C1—C2—C3	-0.5 (4)	Ni1-N2-C13-C12	178.6 (2)
C1—C2—C3—O3	-179.9 (3)	C14—N2—C13—C8	178.3 (3)
C1—C2—C3—C4	0.0 (5)	Ni1—N2—C13—C8	0.2 (3)
C21—O3—C3—C2	-0.3 (5)	C13—N2—C14—C15	176.1 (3)
C21—O3—C3—C4	179.7 (3)	Ni1—N2—C14—C15	-6.0 (4)
C2—C3—C4—C5	-0.6 (5)	N2-C14-C15-C20	0.5 (5)
O3—C3—C4—C5	179.4 (3)	N2-C14-C15-C16	-178.0 (3)
C3—C4—C5—C6	1.7 (5)	C14-C15-C16-C17	176.6 (3)
O1—C1—C6—C7	1.9 (5)	C20-C15-C16-C17	-2.0 (5)
C2-C1-C6-C7	-178.8 (3)	C15-C16-C17-C18	0.4 (5)
O1—C1—C6—C5	-177.8 (3)	C22—O4—C18—C19	174.1 (3)
C2—C1—C6—C5	1.6 (4)	C22	-5.2 (5)
C4—C5—C6—C1	-2.2 (5)	C16—C17—C18—O4	-179.8 (3)
C4—C5—C6—C7	178.2 (3)	C16-C17-C18-C19	1.0 (5)
C8—N1—C7—C6	177.6 (3)	O4—C18—C19—C20	-179.9 (3)
Ni1—N1—C7—C6	-1.4 (4)	C17—C18—C19—C20	-0.7 (5)
C1—C6—C7—N1	2.1 (5)	Ni1—O2—C20—C19	177.2 (2)
C5—C6—C7—N1	-178.3 (3)	Ni1—O2—C20—C15	-3.8 (4)
C7—N1—C8—C9	2.2 (5)	C18—C19—C20—O2	178.1 (3)
Ni1—N1—C8—C9	-178.7 (3)	C18—C19—C20—C15	-1.0 (5)
C7—N1—C8—C13	-176.9 (3)	C14—C15—C20—O2	4.7 (4)
Ni1—N1—C8—C13	2.2 (3)	C16—C15—C20—O2	-176.8 (3)
C13—C8—C9—C10	-0.6 (5)	C14—C15—C20—C19	-176.3 (3)
N1	-179.6 (3)	C16-C15-C20-C19	2.2 (4)
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C7—H7A···O2 ⁱⁱ	0.93	2.41	3.173 (3)	140
Symmetry codes: (ii) $x, -y+1/2, z+1/2$.				

